手持万用在线编程器

EP968

产品使用手册

www.mcuisp.com

单片机在线编程网

Mobile:13926556116

mcuisp@gmail.com mcuisp@163.com

手册版本:V0.98

目录

1	前言6
2	EP968 的主要特点9
2.1	接口IO电平和编程电压VPP均可编程9
2.2	可编程电源输出到目标板9
2.3	电池供电工作,真正的全脱机9
2.4	内置海量存储空间9
2.5	3
2.6	内置强大处理器,运行精心设计的密码学算法9
2.7	可由外部 5V直流电源供电,或者 2 节 5 号电池供电9
2.8	友好的人机界面,易于使用9
3	高级版本:9
3.1	EP968 有一个反刺探的高级保密版本9
4	外观描述:9
4 4.1	外观描述:
4 4.1 4.2	外观描述:
4 4.1 4.2 4.3	外观描述:
4 4.1 4.2 4.3 4.4	外观描述:

4.6 直流供电描述
4.7 电池需求
5 电气特性:13
5.1 极限参数:13
5.2 工作参数:13
5.3 目标板电源输出参数:13
5.4 使用寿命、通电工作寿命、存放方法:14
6 现场操作人员如何使用EP968?14
7 如何升级、更新EP968 的功能固件14
8 连接到计算机,找出上位机软件和使用帮助15
9 下载PPF文件到EP96815
10 EP968 的管理:15
10.1 使能驱动盘的更新15
10.2 查看EP968 内所有功能固件的信息15
10.3 更新EP968 的功能固件15
10.3.1 下载EUP固件升级包到EP968内。最新版本的EUP固件升级包可以从制造商处获取 (WWW.MCUISP.COM)。EP968可存储64个EUP固件包,可脱离计算机在它们之间切换。出 厂时机器内已经预先存储了与版本对应的最新固件15
10.3.2 脱机的切换固件操作:在连接PC下载EUP文件到EP968内后,需要在EP968上进行操作,使新的固件开始工作。步骤是:
10.3.2.1 EP968 退出菜单到主界面。16
10.3.2.2 按住"8"键不要松开, EP968 将重启进入"手持机固件管理器"。

10.3.2.3 选菜单第 2 项 "更换固件",再用方向键选择固件,按 "OK"开始升级/更换。16
10.3.2.4 重启手持机,新的固件将开始工作。
10.4 设置EP968 的密钥16
10.5 设置密钥存储口令16
10.6 打开密钥存储文件的目录16
11 自动序列号设置16
12 如何生成PPF文件17
12.1 PPF文件名组成规则:17
12.1.1 如果文件是保密的,以'!'开头17
12.1.2 后跟 8 位校验和17
12.1.3 后跟工程信息输入框的内容17
12.1.4 后跟芯片型号(可勾选菜单来禁止添加芯片型号)17
12.1.5 再接原始代码文件的文件名17
12.1.6 如果目前的长度大于 128 字节,后面的部分被截除17
12.1.7 为便于用户下载PPF文件到EP968 内:17
12.1.7.1 如果文件是保密的,后跟被绑定的EP968 的序列号;
12.1.7.2 如果文件不保密,后跟"PUB"。18
12.2 生成PPF文件的步骤:18
12.2.1 用菜单选择芯片型号。芯片型号也可输入,要注意大小写。18
12.2.2 检查和设定芯片相关的熔丝、选项字节、配置字、锁定位等18
12.2.3 如需要,设定自动序列号功能18
12.2.4 如需要,填写工程信息输入框18
12.2.5 打开代码文件
12.2.6 如需要生成保密的PPF文件18
12.2.7 预先指定文件号
13 各种芯片相关的帮助18

13.1	STM32 系列CORTEX-M3 MCU18
13.2	STM8S和STM8L 系列MCU:19
13.3	FREESCALE HCS08 和RS08 系列:21
13.4	FREESCALE DSC MC56FXXXX系列:
13.5	TI的MSP430F系列:22
13.6	ATMEL的AVR系列:24
13.7	

1 前言

近年来,单片机有2个发展趋势。

FLASH 存储器技术取代老旧的 ROM/OTP 技术,成为主要的内嵌程序代码存储器,使固件可以多次更新。

芯片的封装越来越小,管脚越来越细密。

因应这两个改变,在线编程技术相比于传统的编程座烧录方式,越来越具有优势。它不需要昂贵易损坏的编程座(尤其对于精密的封装而言);在固件因故需要更新时,可以非常容易升级。

在线编程技术对编程器(烧录器)提出了新的需求:

1,相较单个芯片,在线编程器面对目标板和目标设备,必须能承受危险高压;

2. 目标板和目标设备需要在线编程器供给更大电流、更坚实的电源;

3, 编程器存储着用户的代码,这是辛苦开发得来的知识产权。而在线编程要 求编程器在 PCBA 装配现场、甚至在设备运行现场使用。在线编程器必须采取 措施阻止用户代码被非法窃取、修改。

4, 在线编程器需要具有移动性, 以适应现场固件升级。

EP968,一种新型的、高度智能化的手持万用在线编程器,应运而生,满足了 上述需求。

相较于传统座式编程器,EP968 有几个鲜明特点:

1, 高保密性:

● 存储的代码可被加密,不能读出。

- PPF代码文件可被远程加密传输。代码可在一个城市生成加密的 PPF 文件,这个文件包含代码和所有设定。这个文件可传输到另一个城市 的编程操作人员处,编程操作人员简单的把 PPF 文件导入 EP968,即 可开始编程、升级。
- 保密的 PPF 文件被限制于特定的 EP968,不可用于其它的 EP968。
- 具有编程数量限制功能。
- 详细加密功能,请参阅《特殊补充》部分(仅提供给购买全功能版本的 客户)。
- 2, 高可靠性:
 - 内建独创的 IO 保护 电路。
 - 用 CRC32 和 MD(数据指纹算法)来保证数据的完整、可靠。
 - 具有较高的电磁容忍度,可抵御对讲机、电钻的辐射干扰。
- 3, 高操作简便性:
 - 先进的智能芯片感知技术,无需按"开始"键。减轻编程操作人员的劳动,
 提高效率。轻松支持多机并联操作"多拖多", 摈弃"一拖多"烧录观念。
 - 配合友好的人机界面,一个操作人员可以操作多个 EP968 同时烧录,
 相比传统的1拖多烧录器效率更高,更灵活。
- 4,高便利性:
 - 支持的导入代码格式全,支持 BIN/HEX/S19/430txt/IAR simplecode 等等。

- 7 -

- USB2.0 接口,内建2个U盘,一个用于储存手持机驱动程序及软件, 一个可由用户自由使用。无需再为找不到驱动程序和软件而耽误工作 (本技术专利审查中)。
- 可存储 128 个 PPF 文件,每个文件有 2MB 存储空间。
- 手持机可存储 64 个手持机功能固件,分别支持不同的单片机/ARM 芯片的脱机、联机编程,或者在线调试、仿真。
- 真正的全脱机操作,内置电池独立供电,可在任意地点使用。而传统 编程器必须有市电适配器供电。

2 EP968 的主要特点

2.1 接口 IO 电平和编程电压 Vpp 均可编程

接口 IO 电平从 1.65V 到 5.5V 可调, Vpp 从 3V 到 14.5V 可调。所有 接口线均有 ESD 保护。还内建了独创的过压保护/隔离电路,抵抗目标系统 的危险高压。

2.2 可编程电源输出到目标板

输出到目标的电源电压 1.65~5.2V 可调, 限流(最大 500mA 可调), 具有 电流反灌保护和高压反灌保护。

2.3 电池供电工作,真正的全脱机

良好的移动性和便携性。传统的编程器需市电供电,无法自由移动。

2.4 内置海量存储空间

EP969 内建 2 个 U 盘, 一个 128MB 的具有只读保护, 用于存储 EP968 相关上位机程序、使用手册等; 另一个由用户自由使用。另外一个隐藏的安全存储器用来存储 EP968 的功能固件、用户 PPF 文件、用户设置等等。

2.5 3个编程接口,可适应各种芯片

20PIN 的是标准 JTAG 兼容的, 10PIN 是 AVR ISP 兼容的, 6PIN 的是 飞思卡尔 BDM 接口兼容的。另有 4PIN 转换线和 RS232 电平 DB9 接口均 有现货备选择,其它接口可订做。

2.6 内置强大处理器,运行精心设计的密码学算法

软件、硬件相结合, EP968 帮助阻止用户知识产权的泄露,并帮助控制 用户代码的使用次数。

2.7 可由外部 5V 直流电源供电,或者 2 节 5 号电池供电

全脱机工作,随时随地可用。

2.8 友好的人机界面,易于使用

具有图形显示屏,和全16进制键盘,可发出声音和语音提示。

3 高级版本:

3.1 EP968 有一个反刺探的高级保密版本

任何人、任何时候打开 EP968 外壳,内部关键信息立刻被擦除,给予用 户知识产权更强的保护。

4 外观描述:

4.1 产品图片:

4.2 人机界面

EP968 具有 23 个按键, 主要操作使用"↑" "↓""OK""Cancel"等几个按键结 合菜单完成,显示屏为 128*64 的双屏图形显示。

4.3 编程接口

6PIN的接口是10PIN的一个子集,10PIN又是20PIN的一个子集。20PIN的接口是标准的JTAG口。注意接口座上1脚位置有三角形标志。

VCCT	1	2	VCC IN				
nTRST	3	4	GND				
TDI	5	6	GND	Top View		1 2	
TMS	7	8	GND	TOD ALEW	1		2
TCK	9	10	GND	1 2	2		4
RTCK	11	12	GND	1 2			
TDO	13	14	GND		5	••	6
nSRST	15	16	GND	3 🕒 🔴 4	7		8
NC1	17	18	GND	5 \bullet \bullet 6	9		10
NC2	19	20	GND				
			1	ISP6PIN	ISH	210PJ	N

JTAG20	STM32 6PIN	CM3 SWD	STM8 6PIN	STM8 4PIN	BDM 6PIN	ICSP(PIC) 6PIN	AVR_ISP 6PIN	AVR_ISP 10PIN
9_TCK	1_TXD	9_SWCLK	1_SWIM	2_SWIM	1_BKGD	1_CLK	1_SCK	7_SCK
4_GND	2_GND	4_GND	2_GND	3_GND	2_GND	2_GND	2_GND	8_GND_10
5_TDI	3_RXD		3_NC		3_NC	3_DATA	3_MISO	9_MISO
3_TRST	4_RST		4_RESET	4_RESET	4_RESET	4_MCLR	4_RESET	5_RST
13_JTDO	5_BOOT0		5_NC		5_NC	5_NC	5_MOSI	1_MOSI
1_VccT	6_VCC	1_Vcct	6_Vcct	1_VCCT	6_Vcct	6_Vcct	6_Vcct	2_Vtg
15_RST		15_RST						3_SysClk
7_TMS		7_SWDIO						4_NC
11_RTCK								6_NC

JTAG20	ST7 10PIN	ST7_6PIN	C2_6PIN C8051	89LPC9xx _6PIN
9_TCK	7_ICCCLK	1_ICCCLK	1_C2CK	1_PCL
4_GND	8_GND_10	2_GND	2_GND	2_GND
5_TDI	9_ICCDATA	3_ICCDATA	3_C2D	3_PDA
3_TRST	5_RST	4_RESET	4_NC	4_RST
13_JTDO	1_NC	5_NC	5_NC	5_NC
1_VccT	2_Vtg	6_Vcct	6_Vcct	6_Vcct
15_RST	3_0SC1			
7_TMS	4_NC			
11_RTCK	6_NC			

注: 1、表格中同一行是内部连通的。

4.4 USB 计算机接口

EP968 通过 USB2.0 全速接口连接到计算机。使用标准的 miniUSB 插头。 在烧录时, miniUSB 插头也用来提供 ATE 接口信号。USB_DP 为红灯 出错信号(高电平亮灯); USB_DM 为绿灯成功信号(高电平亮灯); USB_ID 为开始烧录信号(低电平有效、内部有上拉,相当于按键)。 需注意 USB 接口的 ESD 接口保护不如编程接口强。

4.5 供电接口

EP968 可以从 miniUSB 口、DC 插口、电池仓下的焊接点获得直流 5V 电源。也可以内置 2 节 5 号电池,全脱机使用。

4.6 直流供电描述

直流供电需在 5V~5.5V 范围内,最小 300mA 电流(不含供给目标板的电流)。当达到 500mA 输出电流时,最小需获得 1A 电流。在选择直流电源时, 需满足在目标板上电时的瞬时峰值电流。

4.7 电池需求

EP968 可使用 2 节 5 号 1.5V 电池。电池可以是干电池,或碱性可充电电池。(EP968 没有充电功能,可充电电池需使用它本身配套的充电器)。

5 电气特性:

5.1 极限参数:

在超出下表的条件下,产品可能出现永久性的故障。这些极限参数下, 产品不一定能正常工作。长期处在极限参数下工作,可能会影响到产品可靠 性。

符号	意义	最小	最大	单位
Vusb	¹ 施加到 USB 口的外部电压	-0.3	+5.5	V
Vdc_in	²施加到DC插座和焊接点的外部	-15	+15	V
	电压			
Vbat	³ 电池接片上的电压	-0.3	+3.6	V
Vin	编程插座上的电压	-0.3	+15	V

Note:

- 1, mini USB 口上的信号和电源,包括 Vbus D+ D-,都具有 ESD 保护,但 没有更多的限流限压保护措施。
- 2, DC 电源输入具有反压保护,和过压保护(从+5.6V 起)。
- 3,电池接片内部有反向并联的二极管,在电池反接时保护内部电路。用户 在电池误反接时,应尽快取出,否则电池将过热而损坏。电池接片没有 过压保护,不应接入过高电压。

5.2 工作参数:

符号	参数意义	最小	最大	单位
Vdc_in	施加到 DC 插座和焊接点的外部	4.8	5.6	V
	电源电压			
Vbat	电池接片上的电池电压	2.0	+3.6	V
Temp_work	工作环境温度	-5	40	°C
Temp_Shelf	存放环境温度	-20	50	°C

备注:更换工业级别的 TF 内存卡,可扩展工作温度范围。

5.3 目标板电源输出参数:

由 EP968 功能固件控制, VCCT 由 1.6V~5.5V 可调。限流可由 50mA 至 800mA 可调。VCCT 的输出电流能力受到供电电源能力的影响,供电不

足会导致 EP968 重启或死机。

5.4 使用寿命、通电工作寿命、存放方法:

对于一般的室内干净工作场合, EP968 主机设计使用寿命寿命为4年, 通电工作寿命为12000 小时。实际使用寿命随工作环境而变。

长期不使用时,应取出电池再存放,存放期间应每半年通电10小时,以免寿命缩短。

内存卡、线、电源等配件寿命为1年左右,根据使用条件变化。

6 现场操作人员如何使用 EP968?

EP968 特别优化了现场使用操作。

6.1 开机

对于直流供电,插入电源即可。对电池供电,放入电池后,按8键开机。 长时间按住8键,可以关机。

- 6.2 在主菜单选择"2.开始编程",按"OK"开始。
- 6.3 选择内部存储的工程文件(PPF)
- 6.4 选择是否使用智能芯片感知功能。

智能芯片感知功能自动检测目标芯片,自动启动编程。人工开始需要按 键来启动编程。

- 6.5 重复编程操作,一片、一片.....一片。
- 6.6 关机

对于直流供电,拔出电源即可。对电池供电,长时间按住8键,可以关机。如果 EP968 长期不用,应取出电池。

7 如何升级、更新 EP968 的功能固件

在开机时保持按住按键 "8 ", 会进入 BIOS 程序管理器界面, 更换或装入功能固件。

8 连接到计算机,找出上位机软件和使用帮助

用 miniUSB 线缆连接 EP968 和计算机, 在 EP968 选"1. 连接 PC"。 Windows 操作系统会显示 2 个 U 盘。名为" EP968DRV"的内有使用说明 书和上位机软件,建议拷贝到硬盘再打开和运行。在 EP968.exe 点击

搜索手持机 会显示 EP968 的唯一序列号,形如 ^{1968D1D1D7A7B4312078A5AE●}	•
🦸 ep968 ¥0.101单片机在线编程专家***.mcuisp.com	- 🗆 🗙
系统 (L) 帮助 (L) Language www.mcuisp.com 编程器 (L) 关于 (L) 联机下载时的程序文件:	
手持万用编程器	A
搜索手持机 设置手持机	
工程文件生成:	
_	
芯片相关设置 序列号设置 加密设置	
生成不加密的ppf并下到EP968手持机	
批量生成加密的ppf工程文件	
	-

9 下载 PPF 文件到 EP968

连接 EP968 到计算机,打开 EP968.exe 。点击 **下载ppf工程文件到EP968** 。定位到 PPF 文件,如果询问下载的文件 号,选择好。程序就会把 PPF 文件下载到 EP968。

10 EP968 的管理:

EP968 的管理,包括功能固件的查看、更换、升级,密钥的设置等。点击"设置 EP968",弹出的菜单包含所有 EP968 管理命令。

10.1使能驱动盘的更新.

上电开机后,U盘"EP968DRV是只读的。选择这个命令暂时打开写权限,以便更新新的上位机软件和使用手册。EP968重启将重新打开写保护。

10.2查看 EP968 内所有功能固件的信息

这个命令查看 EP968 内部的功能固件的信息,如支持哪些芯片等。

10.3更新 EP968 的功能固件

10.3.1 下载eup固件升级包到EP968 内。最新版本的Eup固件升级包可

以从制造商处获取(www.mcuisp.com)。EP968 可存储 64 个eup 固件包,可脱离计算机在它们之间切换。出厂时机器内已经预先存 储了与版本对应的最新固件

- 10.3.2 脱机的切换固件操作: 在连接 PC 下载 eup 文件到 EP968 内后,需要在 EP968 上进行操作,使新的固件开始工作。步骤是: 10.3.2.1 EP968 退出菜单到主界面。
 - **10.3.2.2** 按住"8"键不要松开, EP968 将重启进入"手持机固件管 理器"。
 - 10.3.2.3 选菜单第 2 项 "更换固件",再用方向键选择固件,按 "OK"开始升级/更换。
 - 10.3.2.4 重启手持机,新的固件将开始工作。

10.4设置 EP968 的密钥

这个命令设置新的密钥到联机的 EP968,并在\ekf 目录下创建密钥存储 文件。如果没有联机的 EP968,仍然可以创建密钥存储文件,以便在批量创 建保密 PPF 文件时使用。

10.5设置密钥存储口令

这个命令设置密钥存储口令,用来在创建密钥存储文件时加密密钥,和 批量创建保密 PPF 文件时解密密钥。这个口令不被保存,必须在每次打开 EP968 后都重新设置。

10.6打开密钥存储文件的目录

这个命令打开\ekf 目录,以便管理密钥存储文件。

设置手持机	允许写驱动U盘,以更新软件(U)	设置EP968内的密钥(9)
	查看EP968内所有固件的信息(E)	设置密钥保存口令(Z)
选择	升级BP968的固件 (P)	打开ekf密钥文件存储目录 (L)

11 自动序列号设置

EP968 具有自动序列号功能。设置对话框如下图:

🏓 自动增量设	定:	-	- >
□ 启用自动	增量		
自动增量设置:			
存放地址	0x08000000	字节数: 16	
增量初值	4		
增量步长	:: 1		
增量方式	BIN_Hex	•	
	存放区域: ・ FLASH	C EEPROM]
	大小端: ④ Little Endian	🔿 Big Endian	
(英明)	[Ok]	自动递增演示	
1、如输入十六进 2、界面上显示、 3、自动增量的地	制,诸加0x前缀 输入均为小端(低位在 证必须在程序文件地:	前) 趾范围内,否则不会实际写入	
	自动递增演示	"以查看和核对你的	设置

12 如何生成 PPF 文件

EP968 创建扩展名为"ppf"的工程文件,包含程序代码、芯片型号、 选项字节、熔丝、配置字、锁定位、eeprom 数据等,以及自动序列号、编 程次数限制等所有设置。数据指纹算法被用来防止非法篡改。PPF 文件可被 加密,以保护用户的知识产权。

12.1PPF 文件名组成规则:

- 12.1.1 如果文件是保密的,以'!'开头
- 12.1.2 后跟8位校验和
- 12.1.3 后跟工程信息输入框的内容
- 12.1.4 后跟芯片型号(可勾选菜单来禁止添加芯片型号)
- 12.1.5 再接原始代码文件的文件名
- 12.1.6 如果目前的长度大于 128 字节,后面的部分被截除
- 12.1.7 为便于用户下载 PPF 文件到 EP968 内:

12.1.7.1 如果文件是保密的,后跟被绑定的 EP968 的序列号;

12.1.7.2 如果文件不保密,后跟"Pub"。

12.2生成 PPF 文件的步骤:

- 12.2.1 用菜单选择芯片型号。芯片型号也可输入,要注意大小写。
- 12.2.2 检查和设定芯片相关的熔丝、选项字节、配置字、锁定位等
- 12.2.3 如需要,设定自动序列号功能
- 12.2.4 如需要,填写工程信息输入框
- 12.2.5 打开代码文件

12.2.6 如需要生成保密的 PPF 文件

点击<mark>批量生成加密的ppf工程文件</mark>。具体细节,参见补充说明书。

12.2.7 预先指定文件号

在这个对话框里,可以预先指定 PPF 文件导入到 EP968 的文件号,简化现场操作人员的工作。如选择"取消",则由现场操作人员在导入到 EP968 时选择文件号。如使用了编程次数限制功能,必须预先指定文件号

🏓 请预先指定生成的ppf文件在B	EP968中的文件号 - 🗆 🗙
<u> </u>	
Ok	Cancel
EP968有1~128个文件号,可以放置128 ppf文件装入EP968的文件号 或者符	8个文件 您可以预先指定 存下载到EP968时再行选择

13 各种芯片相关的帮助

这一章包含各芯片系列相关的 EP968 使用帮助信息

13.1 STM32 系列 Cortex-M3 MCU

EP968 支持 STM32 的 SWD 和串口 ISP 两种编程方式,下面是选项字节设置对话框。

🦸 Option Bytes Setting For STE32F 🗤 .ncuisp.com 💶 🗖	×
值: 设成A5.允许读出 设成FF.阻止读出	
当RDP值等于0xA5时,允许读出Flash存储器内容。 任何其它的值明 Flash内的内容被读出,并明于对Flash前 /K字节的熔写操作。	
F Bit0=1: 軟狗 (IWDG须程序启动). F Bit1=1: 进入STOP描式时不会生気位	
□□ BitT=1;进入STOP模式时不产生复位 □□ Bit2=1:进入Standbu模式时不产生复位	
□ Bit3=1 □ Bit4=1 □ Bit5=1 □ Bit6=1 □ Bit7=1 这5位。用户应该大概也许可以使用	
┌写保护字节:	
WRP0: FF 0.3 4.7 8.11 12.15 16.19 20.23 24.27 28.31	
WRP1: FF 32-35 36-39 40-43 44-47 48-51 52-55 56-59 60-63	
WRP2: FF 64-67 68-71 72-75 76-79 80-83 84-87 88-91 92-95	
WRP3: FF 96-99 100-103 104-107 108-111 112-115 116-119 120-123 124-511	
采用这个设置放弃此次设置恢复出厂缺省值	

对 STM32, EP968 具有"未加密提示"具有"强制加密"选项。如果 PPF 是保密的,具有自动加密功能,保证 RDP 被使能。

对 SWD 接口,建议连出 SWDIO SWDCK nRST VCC VDD 5条线到 EP968。 使 EP968 可完全控制芯片。

对串口 ISP,建议连出 RXD TXD BOOT0 nRST VSS VDD 6 条线到 EP968, 并且 BOOT1 应下拉到地。手持机的 TXD,应该接芯片的 RXD;手持机的 RXD, 接芯片的 TXD。

13.2 STM8S 和 STM8L 系列 MCU:

EP968 支持 STM8S 和 STM8L 的 SWIM 接口在线编程。下面是选项字节设置对话框。

选项字节也可以从 STVD 创建的 OPTION BYTE.hex 导入。

EP968 内建 680 欧姆上拉电阻。配有有 6PIN-4PIN 的转接线,以与原 厂的 ST-Link 兼容。

对 STM8S 和 STM8L, EP968 具有"未加密提示"具有"强制加密" 选项。如果 PPF 是保密的,具有自动加密功能。

EP968 支持对 STM8S 内部的 HSI 振荡进行 fine HSI trim。把校准值(一个字节)存放在可设定的 FLASH 或 EEPROM 位置上。另有对 LSI 进行校准的 fine LSI trim 版本供选用。

EP968 可以将 FLASH 的代码和 EEPROM 的数据合并写入。对于输入 的 hex 或 s19 文件, EP968 烧录时将 0x4000~0x47FF 地址范围的数据写入 EEPROM,将 0x8000 以上的数据写入 FLASH。对于分开的 s19 或 hex 文 件,用文本编辑器如 notepad 将其拷贝、合并即可(hex 文件需要删除中间 的:00000001FF 这一行)。

💋 Option Bytes S	etti	ng For SII8 vvv.ncuisp.com - 🗖	×				
└STM8选项设定:							
OPT0-ReadOutProtect:	AA	设成AA.阻止读出 设成00.允许读出					
	当RDP值等于OxAA时,阻止读出Flash存储器内容。 任何其它的值允许Flash内的内容被读出。						
OPT1-UseBootCode:	00	设置FLASH写保护区(UseBootLoader)的大小					
OPT2-AltFuncRemap:	00	选择ID的第二功能					
OPT3-MiscOptions:	00	设定HSITRIM、看门狗的特性					
OPT4-CLK Options:	00	设定时钟振荡器的特性					
OPT5-HSE Startup:	00	设定HSE的稳定时间					
OPT6-TMU:	00	0x05: TMU禁止,其他值TMU使能					
OPT7-FlashWaitStates:	00	设定Flash WaitStates					
OPTBL-BootLoaderEnable:	00	为0x55时,复位进入ROM内置BootLoader					
TMU String for STM8A:							
555555555555555555555555555555555555555		用来解除读保护的HEX字符串					
精确对HSI进行校准:							
地址: 000000 存住	诸一个	·额外HSI校准值					
采用这个设置		放弃此次设置 恢复出厂缺省值 导入STVP HEX文件					

📕 STE8L10x Option	Byte	:5:		- 🗆 🗙
STM8L10× 选项设定:				
OPT1-ReadOutProtect:	00	设成AA,使能读保护	设成00,关闭读保护	
		当RDP值等于0xAA时,阻止读出Fl 任何其它的值允许Flash内的内容	ash存储器内容。 g读出。	
OPT2-UserBootCodeSize:	00	(4802)设置FLASH写保护区(UseBool	:Loader)的大小	
OPT3-DATA Size:	00	(4803)设置EEPROM区大小		
OPT4-IDWG Options:	00	(4808)设定独立看门狗的特性		
精确对HSI进行校准: 地址: 0000000 存储 采用这个设置	→个额:] _	外HSI校准值 放弃此次设置恢复	出厂缺省值导入STVP HEX文件	

STE8L15xOption	B y te:	S	- 🗆 ×
┌STM8L15x 选项设定:			
OPTO-ReadOutProtect:	AA	设成AA,关闭读保护 设成00,使能读保护	
		当RDP值等于0xAA时,允许读出Flash存储器内容。 任何其它的值阻止Flash内的内容被读出。	
OPT1-UserBootCodeSize:	00	(4802)设置FLASH写保护区(UseBootLoader)的大小	
OPT2-PCODE Size:	00		
OPT3-IDWG Options:	00	(4808)设定独立看门狗的特性	
OPT4-OscCnt Options:	00	(4809)设定时钟振荡器的稳定时间	
OPT5-BOR Options:	00	(480A)设定BOR	
精确对HSI进行校准: 地址: 000000 存储	一个额	妙HSI校准值	
采用这个设置		放弃此次设置 恢复出厂缺省值 导入STVP HEX文件	

13.3 FreeScale HCS08 和 RS08 系列:

EP968 通过 BDM 接口支持 HCS08 和 RS08 在线编程, 飞思卡尔将所 有设置包含在代码文件内, 所以没有对应的设置对话框。

对 HCS08 和 RS08, EP968 具有"未加密提示"具有"强制加密"选项。如果 PPF 是保密的,具有自动加密功能。

对于 HCS08/RS08 的内部 RC 时钟校准,有4种策略供选择:

1, 时钟由 EP968 进行校准, 校准值覆盖原有校准值。

2,比对原值,报错。只采纳原校准值,如原校准值不合理,则报错退出。 如芯片原未加密,EP968 会读出原校准值,与 EP968 获取的校准值比对, 如果误差小到合理,则采纳原有校准值。如误差大,或者芯片已加密,则报 错退出编程操作。

3, 比对原值, 自动。优先采纳原值, 如原值不合理, 则采纳 EP968 的 值。如芯片原未加密, EP968 会读出原校准值, 与 EP968 获取的校准值比 对, 如果误差小到合理, 则采纳原有校准值。如误差大, 或者芯片已加密, 则采纳 EP968 获得的值。

4, 不校准。不进行校准动作, 以节省编程时间。

频率校准的基准值可在 EP968 中设置,以根据应用需要改变校准后的频率。请参考芯片数据手册进行正确设置。

🦸 Settings For	HCS08/RS08	- 🗆 🗙
	校准频率: 32768	Hz
0	< <u> </u>	Cancel

13.4 FreeScale DSC MC56Fxxxx 系列:

EP968 通过 JTAG 口支持 FreeScale DSC MC56Fxxxx 系列的 FLASH 编程。飞思卡尔将所有设置包含在代码文件内,所以没有对应的设置对话框。

用 CodeWarriot 生成 S 文件时,在 Linker 设置处,应选择"Generate Byte Address",如下图所示:

Genera	ite S-Record Fil			
□ Sort	By Addres	Max Record	252	
🔽 Gen	erate Byte Address	EOL	DOS 💌	

CodeWarrior 生成的 S 文件, 需修改扩展名为.S19, 才能被 ep968.exe 识别。

13.5 TI 的 MSP430F 系列:

EP968 可通过 JTAG、SBW、BSL 接口支持 TI 的 MSP430F 系列低功 耗 MCU,并且支持 BSL 的高级加密。

	20PINX		MSP430	
TI_14P	应脚	JTAG20	_14PIN	
1_TDO	13	1_VCCT	2_VCCT	输出给目标板的电源
2_VccT	1	2_Vsen	4_Vsens	测量目标板的电源
3_TDI	5	3_TRST	8_TEST	
4_Vsense	2	5_TDI	3_TDI	
5_TMS	7	7_TMS	5_TMS	
6_NC	8	8_GND	6_GND	
7_TCK	9	9_TCK	7_TCK	
8_TEST	3	11_RTCK	12_TX	mcu的串口发送,对EP968是串口接收
9_GND	14	12_GND	13_GND	
10_GND	16	13_TDO	1_TDO	
11_RST	15	14_GND	9_GND	
12_TX	11	15_RST	11_RST	
13_GND	12	16_GND	10_GND	
14_RX	17	17_NC1	14_RX	mcu的串口接收,对EP968是串口发送

EP968 的 JTAG 口是 20PIN 的,可以选配一条 20PIN-14PIN 的转换线, 转换成 TI 的标准 14PIN 接口。 EP968 支持多种 SBW 的接线方法,可以非常灵活的适应用户板子的情

况:

	14PIN	20PIN		
	•			
SBWTCK	7_TCK	9_TCK		
SBWDIO	1 TDO	13 TDO		
SBWTCK	8_TEST	3_TRST		
SBWDIO	11_RST	15_RST		
SBWTCK	3_TDI	5_TDI		
SBWDIO	1_TDO	13_TDO		
SBWTCK	8_TEST	3_TRST		
SBWDIO	1 TDO	13 TDO		_
			6PIN	
SBWTCK	7_TCK	9_TCK	1_TCK	
SBWDIO	3_TDI	5_TDI	3_TDI	
			6PIN	4PIN
SBWTCK	7_TCK	9_TCK	1_TCK	2_TCK
SBWDIO	8 TEST	3 TRST	4 TRST	4 TRST

在 EP968 上位机中,可以选择烧录端口,以及是否烧断 JTAG 熔丝等。 并可对未使用的中断向量进行高级加密。

₱ MSP430相关设置									
烧录端口选择:				 ■ 焼街JTAG熔丝 ■ 保护信息FLASH 					
高级BSL加密D	口令								
FFE0->FFEE:	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	
FFF0->FFFE:	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	
从文件	导入		随机化	冲断表		保存中	断表到了	て件	
		🔳 使月	目这个高	级BSL加	密口令				
BSL编程时,1	使用这个	<mark>רשאי}</mark> א <mark>BSL</mark>	├未解钞	芯片					
FFE0->FFEE:	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	
FFF0->FFFE:	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	FFFF	
从文件导入									
	Ok Cancel								

13.6 ATMEL 的 AVR 系列:

EP968 支持 AVR 芯片的低压 SPI 和高压 SPI 串行编程。

目前上位机的熔丝设置界面很简单,建议用其他 AVR ISP 设置熔丝,得 到熔丝的 4 个字节值(加密字节,熔丝高、中、低位字节)后,填入 EP968 的 AVR 熔丝配置界面。

AVR 芯片 EEPROM 的数据通常被编译器存放在 hex 文件里,把该文件 的文件名改成与代码文件一样,扩展名改为.eep,放在代码文件同一路径下, EP968 即可自动导入 eeprom 数据到 ppf 文件中去。

13.7